529 research outputs found

    Laparoscopic aortic reinforcement and endovascular graft placement in swine: A new external wrap

    Get PDF
    ObjectiveTo evaluate the feasibility, safety, and histological response of laparoscopic external aortic wrap implantation in conjunction with an endovascular stent/stent-graft placement in the infrarenal aorta in a porcine model.MethodsSeven swine underwent laparoscopic retroperitoneal placement of a custom-made Dacron fabric wrap placed around the infrarenal aorta to create a landing zone for an endovascularly placed aortic stent/stent-graft.ResultsTechnical success was achieved in all animals without any major complications. Follow-up ranged from 1 to 4 weeks. At necropsy, the external wraps were well incorporated into the adventitia, and the stents/stent-grafts were well incorporated into the intima. Small patches of medial necrosis of the aortic wall were observed in one animal in the stent model and in two animals in the stent-graft model. There was no transmural necrosis observed.ConclusionsThis adjunct technique, an external wrap around the infrarenal aorta combined with endovascular grafting, is feasible and deserves further studies into how it may be used to facilitate endovascular repair of aortic aneurysms.Clinical RelevanceWe hypothesize that our new device could provide capability of altering the proximal neck morphology of abdominal aortic aneurysm and reinforcement to the aortic wall. This, in turn, could improve eligibility for endovascular aneurysm repair and prevent or treat type I endoleak and graft migration. Future investigations will involve evaluation of the long-term effect of the external aortic wrap on the integrity of the aortic wall in an animal model and testing the clinical usefulness of this new technique

    Zusammenhang zwischen Mikrohabitatstrukturen, Nahrungsverfügbarkeit und Abundanz von Waldnagern

    Get PDF
    The impact of microhabitat structures and food availability on the abundance of forest rodent

    Observations of Microwave Continuum Emission from Air Shower Plasmas

    Full text link
    We investigate a possible new technique for microwave measurements of ultra-high energy cosmic ray (UHECR) extensive air showers which relies on detection of expected continuum radiation in the microwave range, caused by free-electron collisions with neutrals in the tenuous plasma left after the passage of the shower. We performed an initial experiment at the AWA (Argonne Wakefield Accelerator) laboratory in 2003 and measured broadband microwave emission from air ionized via high energy electrons and photons. A follow-up experiment at SLAC (Stanford Linear Accelerator Center) in summer of 2004 confirmed the major features of the previous AWA observations with better precision and made additional measurements relevant to the calorimetric capabilities of the method. Prompted by these results we built a prototype detector using satellite television technology, and have made measurements indicating possible detection of cosmic ray extensive air showers. The method, if confirmed by experiments now in progress, could provide a high-duty cycle complement to current nitrogen fluorescence observations of UHECR, which are limited to dark, clear nights. By contrast, decimeter microwave observations can be made both night and day, in clear or cloudy weather, or even in the presence of moderate precipitation.Comment: 15 pages, 13 figure

    ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    Full text link
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from August 14 to September 30, 2016. ProtoDESI was an on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A Fiber View Camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a Fiber Photometry Camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.Comment: Accepted versio

    Observations of the Askaryan Effect in Ice

    Get PDF
    We report on the first observations of the Askaryan effect in ice: coherent impulsive radio Cherenkov radiation from the charge asymmetry in an electromagnetic (EM) shower. Such radiation has been observed in silica sand and rock salt, but this is the first direct observation from an EM shower in ice. These measurements are important since the majority of experiments to date that rely on the effect for ultra-high energy neutrino detection are being performed using ice as the target medium. As part of the complete validation process for the Antarctic Impulsive Transient Antenna (ANITA) experiment, we performed an experiment at the Stanford Linear Accelerator Center (SLAC) in June 2006 using a 7.5 metric ton ice target, yielding results fully consistent with theoretical expectations

    Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV

    Full text link
    Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs) consist of dipole distributions oriented towards major astrophysical landmarks such as the galactic center, M87, or Centaurus A. We use a comparison between real data and simulated data to show that the HiRes-I monocular data for energies above 10^{18.5} eV is, in fact, consistent with an isotropic source model. We then explore methods to quantify our sensitivity to dipole source models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure

    A Measurement of Time-Averaged Aerosol Optical Depth using Air-Showers Observed in Stereo by HiRes

    Full text link
    Air fluorescence measurements of cosmic ray energy must be corrected for attenuation of the atmosphere. In this paper we show that the air-showers themselves can yield a measurement of the aerosol attenuation in terms of optical depth, time-averaged over extended periods. Although the technique lacks statistical power to make the critical hourly measurements that only specialized active instruments can achieve, we note the technique does not depend on absolute calibration of the detector hardware, and requires no additional equipment beyond the fluorescence detectors that observe the air showers. This paper describes the technique, and presents results based on analysis of 1258 air-showers observed in stereo by the High Resolution Fly's Eye over a four year span.Comment: 7 pages, 3 figures, accepted for publication by Astroparticle Physics Journa

    A New Type of Plasma Wakefield Accelerator Driven by Magnetowaves

    Full text link
    We present a new concept for a plasma wakefield accelerator driven by magnetowaves (MPWA). This concept was originally proposed as a viable mechanism for the "cosmic accelerator" that would accelerate cosmic particles to ultra high energies in the astrophysical setting. Unlike the more familiar Plasma Wakefield Accelerator (PWFA) and the Laser Wakefield Accelerator (LWFA) where the drivers, the charged-particle beam and the laser, are independently existing entities, MPWA invokes the high-frequency and high-speed whistler mode as the driver, which is a medium wave that cannot exist outside of the plasma. Aside from the difference in drivers, the underlying mechanism that excites the plasma wakefield via the ponderomotive potential is common. Our computer simulations show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over many plasma wavelengths. We suggest that in addition to its celestial application, the MPWA concept can also be of terrestrial utility. A proof-of-principle experiment on MPWA would benefit both terrestrial and celestial accelerator concepts.Comment: revtex4, 4 pages, 6 figure
    corecore